Predictive Analytics and Modeling Increase Your Odds of Winning

Did you know that you are likely to encounter (and use) predictive analytics each day, but may not realize it?

The practice of predictive analytics allows us to make predictions on future behavior using historical data.  Predictive models and their application in businesses will only increase moving forward. Did you know that you are likely to encounter (and use) predictive analytics each day, but may not realize it?

When you search on Google and possible suggestions appear it’s because predictive analytics are being used.  When you shop on Amazon and other items you may like are suggested it’s because they are employing an algorithm which uses predictive analytics.

Predictive Analytics started in the 1940s and was used by government agencies. By the 1970s the process began to become more mainstream. By 1998, Google used algorithms to produce relevant search results. The short story is, this isn’t new and it’s being used more frequently by businesses, governments, manufacturers in multiple applications in the technology field, supply and demand and financial forecasting. You can employ a predictive analytics model just about anywhere you want to be able to forecast outcomes and responses: Sales, Marketing, Manufacturing, Customer Service, Healthcare, Government, Financial forecasting, Acquisition, Development, Investment, and the list goes on. The utility of data can be highly beneficial across an organization.

When creating a predictive analysis it helps to frame the terminology. The term model in predictive analytics refers to a “representation” of the specific world or universe we are talking about, an attempt to relate one set of variables to another.

Predictive analytics is the process that brings together data management, information technology, and modeling. The process seeks to bring together meaningful (statistically relevant) relationships among variables and represent these relationships in a model.

There are many types of predictive models that have been used over the years. However, two types of commonly used predictive models are: Regression and Classification.

Regression looks to predict a change in response (such as cost, price, increase, decrease, etc.)

Classification is used to predict a categorical response (yes/no, which ones, who, what, etc.)

There are 6 Stages in Developing a Predictive Model:

  1. Define- The purpose
  2. Collect- Determine the information that you have and the information that you need
  3. Build- Once you have collected your data set(s) you can begin create
  4. Test- Validate your assumptions
  5. Implement- Run the model to provide insight
  6. Improve- Take every opportunity to add relevant data and refine

There are certain assumptions made in producing a predictive model. However, it is the wisest approach to keep assumptions at a minimum from the beginning stage when selecting the predicting variables most important to your model. As you move forward and explore forecasting capabilities of your model, remember to remain flexible and cut away unnecessary assumptions. Your goal, when it comes to assumptions in your model, is to have as few of them as possible! This means, know your industry well and look to have reality-driven variables—this way, you can produce a predictive model that is accurate and useful.

Accuracy in predictive models is determined by the quality of data, the amount of data, the relevance of the data applied, the way the data is prepared, and how old the data is. Simply put, if the data is irrelevant or of poor quality going in—sadly, you will get nothing of consequence coming out.  In essence you are measuring the probability that predicting your stated outcome is better than chance mechanisms.

It’s been my experience that everyone would like to increase their odds of winning. The point being if when making a go-no-go decision, spending hard-earned capitol or risking your brand’s reputation in market it makes sense to bring a predictable outcome to those big decisions.

 

This content was originally published by Mindspot Research . Visit their website at www.mindspotresearch.com.

Company profile

Mindspot Research

Mindspot Research

Winter Garden, Florida, United States of America
Telephone:
4077304604
Email:
Info@mindspotresearch.com
Website:
www.mindspotresearch.com
About Mindspot Research:
Mindspot Research - Smarter Business. Specializing in improving our client's in-market success, increasing their profits and reducing their risk.
www.mindspotresearch.com